If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32w^2-60w+27=0
a = 32; b = -60; c = +27;
Δ = b2-4ac
Δ = -602-4·32·27
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-12}{2*32}=\frac{48}{64} =3/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+12}{2*32}=\frac{72}{64} =1+1/8 $
| 10=5/9v | | 44=3u-7u+8 | | 1/2+x-3/4=2 | | 5/9v=10 | | 2^-x+1-3=13 | | 4-2y/5y=-6 | | 22-x=x-4 | | 1/2-x+2=3/4 | | 18+6(x-3)=5x+3 | | -7(x+4)=6-20+7x | | 4x-5*8x+9=0 | | 2.4-3x=13 | | 1/2+x-2=3/4 | | 4x5*8x+9=0 | | -6x+7=-5x-6 | | 16x-10/x=27 | | x2+4x+5=0 | | -8w+48=8(w+4) | | 2y/5y+7=-3 | | 6=-3x+15 | | -9-1=4x+1-3x | | -7x+16=2(4x-4)-15x | | 5x2+5=x | | 6(4x+10)=60 | | 84+(x-6)=90 | | 3(x-8)=-66 | | 4=2r+2r | | x-22=32-x | | 1/2+3-1-6x=6x+3 | | x+(84-6)=90 | | 10-m=4 | | -15+4x=44 |